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An economic problem of great practical importance is to choose the

Pt

] 1o
NS i s
=

location of facilities, such as industrial plants or warehouses, in order to
minimize the cost (or maximize the profit) of satisfying the demand for some
commodity. [n general there are fixed costs for locating the facilities and

transportation costs for distributing the coomodities between the facilities

D NI N NaTa s

e

and the clients. This problem has been extensively studied in the literature {

o

and i1s often referred to as the glant, wgrehouse or facility location
,-’/

E: roblem. When each potential facility has a capacity, which is the maximum
;p demand that it can supply, the problem is known as the capacitated facility
:5 location problem. When the capacity hypothesis is not ;:qug&v:F ;:ve the
X . simple or uncapacitated facility location problem, which‘yé‘abbreviate by UL.
jf o 7 The mzz;ematical formulation of these problems as integer programs has
proven very fruitful in the derivation of solution methods. To formalize UL,
:4 we consider a set of clients [ = (1,...,m} with a given dema;a‘ﬁgr a single '
3% A commodity, and a set of sites J = {l,...,n} where facilities can be ™.
/ located. In the literature it has been traditional to use the phrasing "\_\\
;1 “facility j is open" to mean that a facility is actﬁa]ly located at site h
R J. Let fj be the given fixed cost of opening facility j and assume there t
-‘ is a known profit cij that is made by satisfying the demand of client i
jé from facility Jj. Typically, cij is a function of the production costs at K
.E facility Jj, the transportation costs from facility j to client i, the
i demand of client i and the selling price to client 1i. For example,
;: ) cij 2 di(pi'qj'tij) where di is the demand, p, the price per unit, qj
? the production cost per unit and tij the transportation cost per unit. UL
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;5; is to open a subset of facilities in order to maximize total profit, given

' that all demand has to be satisfied.

s,

;_3 For any given set S of open facilities, it is optimal to serve client
4 i from a facility j for which cij is maximum over Jj ¢ S. So, given S,
- the profit is 2z(S) = ] max Cij = 3 fj. The problem is to find a set S
N iel jeS JeS

Y that yields the maximum profit Z, i.e. Z = max z(S). This can be viewed as
' Sed

ft a combinatorial formulation of the problem. Note that there is no laoss of

%“ generality in assuming fj.l 0 for all j e d since if fk <0 every
(jg optimal solution contains facility k.

?;‘ An integer linear programming formulation is obtained by introducing the
»{j following variables. Let xj =1 if facility j 1is open and xj =0
g

90 otherwise; y;; = 1 1if the demand of client i is satisfied from facility
o . .

> J and Yij = 0. otherwise. The integer program is
&
by o [ [
! (1.1) Z=amax )} ) Ci:¥::= ) f.x.
N iel jed N jeg 9

~ (1.2) 1 ¥::21 all i el -
:-_: jed 1

k]
«'.:

. (1.3) Yij £ % all iel, jed

. :
e (1.4) Xgp ¥ig € (0,1} all iel, jeld

b

v The constraints (1.2) guarantee that the demand of every client is satisfied,
L%

) whereas (1.3) quarantees that the clients are supplied only from open

& o

3¢, facilities.

:{;
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3
The selling price of the commodity to client i enters the solution of
(1.1)=(1.4) as a constant. Only the costs (production, transportation and
fixed operating costs) are relevant for the decision. This is why in the

literature UL is often presented as

(1.1°*) min Dodiiy v T fox
151 jeg WU 52y 3

subject to (1.2)=(1.4) where d1j is the cost (production plus transpor-
tation) of serving client i from facility j. This formulation is math-
ematically equivalent to (1.1)-(1.4) since (1.1') becomes -(1.1) by setting
cij = 'dij‘ In other words, costs can simply be regarded as negative profits.

In the integer program (1.1)-(1.4), the xj‘s are the important vari-
ables. Once a set of xj‘s that satisfy (1.4) are specified, it is simple
to determine a set of yij's that solves the integer program for the fixed
xj‘s. Even if we drop the integrality requirement on the yij's. an optimal
set of yij‘s is given by yij* =] and yij =0, j# j* where cij* =

max{c,.: x. =1, j ¢ J}. Thus (1.4) can be replaced by
13" 73
(1.4*) X; e (0,1}, v 20 all iel, jed

The formulation (1.1)-(1.3), (1.4') is a mixed integer linear program.

I TP R e A A S S WA SRR §
-, . . . -

v,

e, ot & « (V) -

B . 1) e
‘ . . IR
3 B A ibande bl o 'eie




ol Y
Tl o™

§

ot~

X R NI

WY

_-}‘:
v
¥
.

x's 3 {3 i
{0l bl By g Wt

PO D

.'f*'"‘;.i*

. .0
- c'l.l a

PO

- XX K

4
An integer linear program equivalent to (l.1)-(1.4) is obtained by
replacing the constraints (1.3) by the more compact set of constraints
(1.3*) 1 ¥y <mx, all jed. H
iel ="

To see that (1.3) can be replaced by (1.3'), note that when X = 0 both
(1.3) and (1.3') imply yij = 0 for all i e I, and when xj =1 both (1.3)
and (1.3') are satisfied for all choices of Yij that satisfy the constraints
(1.2). However, the two formulations are equivalent only for 0-1 values of
the variables xj. For each Jj, (1.3') is obtained by suming (1.3) over all
i ¢ I; hence any solution to (1.2), (1.3) is also a solution to (1.2) and
(1.3'). But the converse is false when 0 < X <1l; i.e. the feasible region

defined by (1.2), (1.3') and
(1.5) Oixjil,ﬁjzo all i eI, jed

strictly contains the region defined by (1.2), (1.3) and (1.5).

In UL, the number of facilities that are open in an optimal solution
is not specified; it is determined by a solution of (1.1)-(1.4). From a
practitioner’s standpoint, it might be useful to consider a formulation where
the number p of open facilities is a parameter of the problem. This is

realized by adding ane of the following constraints to the program (1.1)-(1.4)
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(1.6) . . ) Xj =P
Jed
or
(1.7) ) x; £ P
Jed

where p is some given integer, 1 < p < n. The formulation (1.1)-(1.4),

(1.6) has been called the p-facility location problem. When n =m and

fj =0 for all jeJ, (1.1)=(1.4), (1.6) is known as the p-median problem.

It is often solved in the literature using the minimization objective func-

tion (1.1') where (dij) is a distance matrix, i.e. it is positive, symmetric
and d1j + djk-z dj» 1 £ 1,3,k < n. This model is developed in Chapter 3 of
the book.

To motivate further the study of UL, we give two examples. First we
interpret (1.1)-(1.4) as a bank account location problem, see Cornuejols,
Fisher, Nemhauser (1977b). The second example occurs in clustering analysis,
see Mulvey and Crowder (1979). Other examples arise in lock-box location
(Kraus, Janssen and McAdams (1970)] location of offshore drilling platforms
[Balas and Padberg (1976)], economic lot sizing [Krarup and Bilde (1977)],
machine scheduling and information retrieval [Hansen and Kaufman (1972)] and

portfolio management [Beck and Mulvey (1982)].

A Bank Account lLocation Problem

The number of days required to clear a check drawn on a bank in city j
depends on the city 1 1in which the check is cashed. Thus, to maximize its

available funds a company that pays bills to clients in various locations may

find it advantageous to maintain accounts in several strategically located
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banks. It would then pay bills to clients in city i from a bank in city j
that had the largest clearing time. The economic significance to large

corporations of such a strategy is discussed in an article in Businessweek

s (1974).
b To formalize the problem of selecting an optimal set of account
g locations, let [ = (1,...,m} be the set of client locations, J = (1l,...,n}

the set of potential account locations, fj the fixed cost of maintaining an

account in city j, d.

i the dollar volume of checks paid in city i, and 0

J
the number of days (translated into monetary value) to clear a check issued

+5 3P

in city J and cashed in city i. All this information is assumed to be

known and cij 2d.¢

i3 represents the value of paying clients in city i

from an account in city j. Let Xg = 1 if an account is maintained in city

L] Ay

j, and 'xj = 0 otherwise; yij =1 if clients in city i are paid from
‘al account j, and yij = 0 otherwise. Then the account location problem can

' be stated as (1.1)}-(1.4).
}J Besides desiring to delay payments for as long as possible, corporations
also want to collect funds due to them as quickly as possible. This can be t
R done by situating check collection centers or "lock-boxes® at optimal

locations. Since (1.1) and (1.1') are mathematically equivalent, (1.1)-(1.4)

a
e i -

is also a model for the lock-box problem.

A Clustering Problem

3 5 3 W -

Cluster analysis consists of partitioning objects into classes, known as

clusters, in such a way that the elements within a cluster have a high degree

Ry - VRN

of natural association among themselves while the clusters are relatively

distinct from one another. Cluster analysis is used in biology, psychology,
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medicine, artificial intelligence, pattern recognition, marketing research,

%

.

automatic classificatfon and statistics.

'J_f,fﬁ.a

let I = (1,...,m} be the set of objects to be clustered. The

sl
ﬁ

clustering is done around objects that “represent" the clusters. Let

ML
=

=
A RSN

J = (l,...,n} be the set of eligible “cluster representatives". In many

S
s

>
3\
~

applications J = [. However in some applications |J| < |I|, i.e. only

. e
A

objects with certain characteristics can qualify as representatives (e.g.
survey papers and books in the automatic classification of technical material
in some field). In other cases |I| < IJI, (e.g. in the automatic classi-
fication of technical material, an alternative to the above policy is to
represent a cluster by a 1ist of key words. This list does not need to
match exactly that of any single paper in the cluster).

The clustering problem is defined relative to a matrix of parameters
cij that represent the similarity between objects i and j. For example
cij could be the number of common key words associated with technical papers
i and j. Anderberg (1973) gives several ways of calculating the similar-
ity matrix C. In most applications there are no natural fixed charges.

Rather, the constraint (1.6) is added to the formulation (1.1)-(1.4).

O T O B o o A e s
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X 0
N 2. Brief Historical Overview
;: There is a vast literature on the uncapacitated Tocation probiem.
izg Krarup and Pruzan (1983) give an up-to-date survey. We will not repeat their
it effort here, However, to set the stage for the ensuing sections, we will

-g mention the main solution approaches and cite some basic references.
-E; The first approaches to solve UL were heuristic. One of the earliest
§$: heuristics is due to Kuehn and Hamburger (1963), who actually present it for
a5 a wider class of location problems. It consists of two routines. The first
_§3 routine opens facilities sequentially in an order that maximizes the increase
j; of the objective function at each step. [t stops when adding a new facility
l}é could only decrease the objective. Kuehn and Hamburger called it the “add

%; routine”; in the modern literature such a procedure is called a greedy

f H- heuristic because of its appetite for maximum improvement at each step.

ivf Their second routine is the "bump and shift routine". It eliminates (bumps)
'§§ any facility that has become uneconomical because of the presence of other
‘:ﬂ facilities chosen subsequently by the greedy heuristic. Then, starting from
- this feasible solution, it considers interchanging (shifting) an open and

_;g closed facility. Such a pairwise interchange is performed if it improves

itf the current feasible solution and the procedure stops when a solution has

A been found that cannot be improved by such interchanges. In the remainder of
gis this chapter, the shifting procedure will be referred to as an interchange
l}; heuristic.

v The greedy and interchange heuristics are the basis of numerous

’Ef approximation algorithms. They can, of course, be helpful in exact

;E algorithms that require feasible fnitial solutions cr use feasible solutions
1T‘ in other ways, Spielberg (1969b) and Hansen and Kaufman (1972). However,

%
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9
when a heuristic is usad to abtain a final solution, it is very important to
have an upper bound as well so that the user can be confident that the
heuristic solution value is not too far from the optimal value. Cornuejols,
Fisher and Nemhauser (1977b) gave such bounds for the greedy and interchange
heuristics, both a priori worst-case bounds and a posteriori bounds on a
particular solution constructed by the heuristic. These bounds were
generalized to the maximization of submodular set functions (see Section 9)
by Nemhauser, Wolsey and Fisher (1978).

General solution techniques for finding optimal solutions to integer
programs have been customized for UL. The mixed integer linear programming
formulation can be solved by Benders decomposition, Benders (1962). This
approach was proposed by Balinski and Wolfe (1963) and appears to have been
the first attempt to solve UL to optimality. The computational experiments
were discouraging, see Balinski (1965), and this method was abandoned until
recently. Magnanti and Wong (1977) develop techniques to accelerate the
convergence of Benders decompositon. They generate strong cuts from the set
of feasible Benders cuts and by so doing they are able to reduce the number
of integer programs to be solved. Nemhauser and Wolsey (1981) consider the
Benders cuts in the more general framework of maximizing a submodular set
function.

Branch-and-bound algorithms for the uncapacitated plant location problem
use the fact that it is not necessary to constrain the variables yij to be
integral. Branching is done on a binary enumeration tree with respect to the
variables Xy Bounds are obtained from one of the two linear programming

relaxations - (1.1), (1.2), (1.5) and (1.3) or (1.3'). The first algorithms




10
used the linear program with (1.3'). Efroymson and Roy (1966) showed that
this linear program can be solved analytically so that the bound at each node
of the enumeration tree could be computed very quickly in constant time.
Improvements to Efroymson's and Roy's algorithm were made by Spielberg
(1969a), Khumawala (1972) and Hansen (1972). However, when (1.3') is used
in a linear programming relaxation, the bounds obtained are generally not
sufficiently strong to curtail the enumeration adequately.

As we observed previously, the constraints (1.3) imply (1.3') but not
conversely. The linear programming relaxation that uses (1.3) is called the

str’ng linear programming relaxation abbreviated by SLP. Revelle and Swain

(1970), among others, observed that SLP is so effective that its solution is
very often integral. Thus a branch-and-bound algarithm that uses SLP to
compute bounds is very likely to perform well in the sense that very little
(if any) enumeration will be required. However, because of its size, it is
not efficient to solve SLP directly by the simpiex method.

Much of the recent research on UL has involved the development of
special purpose algorithms for solving SLP. Marsten (1972) used parametric
linear programming and a special implementation of the simplex method.
Garfinkel, Neebe and Rao (1974) used Dantzig-Wolfe decomposition. Schrage
(1975) devised a generalized simplex method to treat the variable upper
bounds (1.3). Guignard and Spielberg (1977) suggested a version of the
simplux method that pivots only to integral vertices of the polytope (1.2),
(1.3), (1.6). Cornuejols and Thizy (1982b) used a primal subgradient

algorithm.
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Dual algorithms or algorithms that solve the dual of the strong linear
programming relaxation have the advantage that upper bounds are obtained from
any dual feasible solution. Thus a sufficiently good bound may be obtained
to fathom a node of the enumeration tree prior to solving the dual to
optimality.

Bilde and Krarup (1977) and Erlenkotter (1978) used heuristic methods to
obtain a near-optimal solution of the dual. Erlenkotter went a step further
by using the compiementarity slackness conditions of linear programming to
improve this bound. His procedure was so effective that in 45 out of the 48
problems that he tested, optimality was reached at the first node of the
branch-and-bound algorithm. His DUALOC code appears to outperform all exist-
ing algorithms.

A Lagrangian dual of the formulation (1.1)-(1.4), proposed by Geoffrion
(1974), is obtained by weighting the constraints (1.2) by multipliers and
placing them in the objective function. It can be solved using subgradient
optimization, see Held, Wolfe and Crowder (1974). The Lagrangian approach
can also Bgtused for the p-facility location problem.. Some computational
resylts are reported in Narula, Ogbu and Samuelisson (1977), in Cornuejols,
Fisher, Nemhauser (1977b) and in Mulvey and Crowder (1979). Krarup and
Pruzan (1983) mention a different Lagrangian dual obtained when constraints
(1.3) (instead of (1.2)) are weighted by multipliers and placed in the

objective function.
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3. Computational Complexity

An algorithm is said to be a polynomial-time algorithm for problem P,

S%; if for all instances of P (possible data sets), the computing time of the

:E: algorithm can be bounded by a polynomial function of the data size. If L

::i measures the data size and k is the order of the polynomial, we say that

i&% the computing time of the alqorithm is O(Lk). Sometimes it is more conve-

S:E ' nient to express the computing time as a function of basic data péraneters,

5 such as the dimension of a matrix or the number of nodes in a graph. Then,

ig; but only then, it is assumed that all arithmetric operations and compari-

:S? sons are performed in unit time.

;; A fundamental theoretical question, also of some practical importance,

i%§ is whether a given combinatorial optimization problem can be solved by some

j:f polynomial-time algorithm. Oenote by P the class of problems that can be

t“ solved in polynomial-time, i.e. by some polynomial-time algorithm. For most

‘:E combinatorial optimization problems of practical interest, the question -

‘qi are they in P? - has not been answered. A significant step was made by Cook
. (1971) and Karp (1972) who introduced the notion of NP-complete problems.

§S This is a class of combinatorial problems that are eduivalent in the sense

§¢Q that either all or none of these problems can be solved by a polynomial-time
« algorithm.

37 ' o L | |

f;f At present no polynomial-time algorithm is known for solving any

333 NP-complete problem and it has been widely conjectured that none exists. A

't‘- probiem is said to be NP-hard if the existence of a polynomial-time algorithm

;ﬁ to solve it would imply that all NP-complete problems can be solved by a

;: polynomial-time algorithm. Thus to show that a problem (P) is NP-hard it

| ﬁ suffices to'find a polynomial transformation that reduces a known NP-complete
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problem, see e.g. the comprehensive list given by Garey and Johnson (1979),
to the problem (P).

Theorem 3.1 The uncapacitated plant location problem is NP-hard.

Proof: We need to introduce the vertex cover problem:

Given a graph G and an integer k, find whether there exists a subset
of k vertices of G that cover all the edges of G. (Vertex v is said
to cover edge e if v is an endpoint of e.) The vertex cover problem is
NP-complete, see Karp (1972) or Garey and Johnson (1979). We reduce it to
uL.

Consider a graph G = (V,E) with vertex set V and edge set E.
Construct an instance of UL with the set of potential facilities J =V and
set of clients [ = E. Fet cij 20 forall i ¢E and j ¢ V, and let
fj =] for all j ¢ V. This transformation is polynomial in the size of the
graph.

Note that the instance of UL defined in this way consists of covering
all the edges of the graph G with the minimum number of vertices. Thus an
optimal solution of UL provides the answer to the vertex cover problem. This

proves that UL is NP-hard. (0

A polynomial transformation that reduces a known NP-hard problem to a
problem (0) shows that (Q) is also NP-hard. An immediate corollary of
Theorem 3.1 is that the p-facility location problem is NP-hard since solving
it for every p = 1,...,n provides a solution to UL.

Although UL is NP-hard, some special cases can be solved in polynomial-

time. Kolen (1982) has shown that UL is solvable in time O(r3) when the
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problem is defined as a tree with r nodes and certain other assumptions are
satisfied. These are that the clients as well as the facilities are located
at nodes of the tree. A length is associated with each edge of the tree and
dij is the distance between nodes i and j. Kolen solves the formulation
(1.1)', (1.2)=(1.4) and shows that the strong linear programming relaxation
always has an integral optimal solution.

Another interesting case of the uncapacitated plant location problem
that can be solved in polynomial time was discovered by Krarup and Bilde
(1977). In this instance too, the crux is that the strong linear programming
relaxation always has an integral optimal solution. The conditions required
by Krarup and Bilde generalize those obtained when a classical economic iot
size problem is formulated as an uncapacitated plant location problem.

. Finally, Barany, Edmonds and Wolsey (1983) have given a polynomial-time
algorithm for a tree partitioning problem that contains both Kolen's and

Krarup's and Bilde's problems.
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4. Duality
Suppose we are given a feasible solution to UL that is claimed to be
optimal or nearly optimal (within a specified absolute or relative
tolerance). We know of only two ways to verify this claim.
a. enumeration: compare, perhaps implicitly, the value of this feasible
salution to all others.
b. bounding: determine an upper bound on the optimal value of all feasible
solutions that is sharp enough to verify the claim.

Enumeration is useful algorithmically only when it can be done implic-
itly. Generally, this means that the enumerative approach, as in a
branch-and-bound algorithm, uses upper bounds to curtail the enumeration.
Conversely, an algorithm whose primary thrust is bounding may need to resort
to some enumeration to verify the claim.

The point is that good upper bounds, as well as good feasible solutions,
are crucial in solving UL, as for that matter, any hard combinatorial
optimization problan. We will see, however, that UL has many features that
make it a relatively easy NP-hard problem.

Duality plays a key role in the determination of upper bounds. The dual

of the strong linear programming relaxation given by (1.1)-(1.3), (1.5) is

(4.1) W=min ) u; + ) tj
iel Jed
(4.2) Uj ¥ Wiy 2 €45 all iel, jed
(4.3) ;il "ij + tj > -fj all j e d
(4.4) Wige ty 20 all iel, jeld

‘-';..;"‘1-.;.. -‘;ﬁ'.;"';'.!:"":.‘"\‘ -...\'_' . . ‘o w et '-:-; LAt S Y " N ' '.‘n o’ : LI - ".. *.e . ..-
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We can eliminate variables and constraints from this formulation by
noting that:
a. for given 'ij' (4.1) implies that we would like to make tj as small

as possible. Thus (4.3) and (4.4) imply that ty = (1 Wij - fj)*,
. jel

where (a) = max(0,a).
b. for given Ui (4.1) also implies that we would like to make Wiy 3as

small as possible. Thus (4.2) and (4.4) imply that "ij = (cij - “i)+'

Thus
“ +
(4.5) tj s [iél(cij - ”i)

- fj]* all § ¢ J.

I[f we think of the ui's as prices associated with the clients, the tj's

are the profits from the facilities relative to these prices. In other words,
if someone agreed ta pay us u; for the right to serve the ith client,

we would be willing to sell the jth facility for the price tj given by (4.5).
Substituting (4.5) into (4.1) yields the condensed dual

(4.6) Wemin{J u + 3 [} (e, -uw) -f15.
o ik Y jﬁa T8t B J

The dual is then to determine a minimum sum set of prices u; for the
clients and consequently a minimum sum set of prices for the facilities so
that we would agree to sell the operation. [t tells us the linear program-
ming approximation of the worth of our assets.

If 1%{ [(cij - “i)+ - fj]+ > 0, then some wu, can be increased without

then u

increasing the objective function (4.6). Also if u; > max c, .

Jed 3’

Y \.,\

- ..!-{L S
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can be decreased without increasing the objective function (4.6). These

observations yield a second condensed dual

(4.7) Wemin j u;
u el
(4.9) y; <max c. all i e l.
1= jed Y

Although both condensed dual formulations are nonlinear, they are
important because they contain only m variables; furthermore for any value

of u, we obtain the upper bound

(4.10) W) = § ui+ 5 O[5 (e
iﬁx ! jﬁa Vet

when (4.8) holds, the upper bound reduces to

(4.11) W(u) = uje
el
A Lagrangian dual of (l.1)-(1.4) is obtained by weighting the constraints

(1.2) by multipliers u; and placing them in the objective function. Let

(4.12) Llu) =max{ J ) €i.vis = L foxe v J u(l - ) y..)]
jel jed W ey 3T e 7 jeg M

subject to (1.3) and (1.4).
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Frequently, a Lagrangian dual provides a tighter upper bound than a
linear programming dual. But this is not the case here.
Proposition 4.2 L(u) = W(u) for all u.
Proof: L(u) =max ) ) (c.. -u)y,. - )} f.x;,+ J u. subject to
B jel jeg W VT geg 3T gep
(1.3) and (1.4). Hence Yij * % if cij -u, > 0, Yij * 0 if Cij = Yy <0
and Yi; * 0 or X3 if Cij = Y = 0. Thus
(4.13) L{u) = max Yy U7 (eys- u-)+ flx,+ ) u
x;5¢{0,1} jeJ il U W e !
=Zt+XU-’W(U)
jed 3 e !
where tj is given by (4.5). This is true since Xy 1 if ) (Cij - ui)+ - :

iel

ij ui)+ - fj <0 and x5 = 0 or 1 otherwise. 0O

fi >0, %5 =0 if | (c,

J iel

NNy R AT T L S g

Corollary 4.3 L =mi;in L(u) = W.
u

When uy satisfies the constraints (4.8), the solution of (4.13)

satisfies the complementarity conditions

(4.14) (7 (e,

+
—u) - f)x, =0 all e d.
jep v T i3

Equation (4.14) suggests that if u satisfies (4.8), to find a good primal

solution we should only consider opening those facilities for which

€

+
] (e.;=wu) «f. =20, -
iel 1 !

J
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5. Heuristics
The combinatorial formulation of the uncapacitated plant location problem

max 2(S) where 2z(S) = 7 max €y = ) fj
Scd iel jeS J JeS

nonlinear primal that depends only on the values of the sets S <c J. Based

can be viewed as a condensed,

on this observation numerous authors have proposed heuristics that iterate

on the set S of open locations and avoid an explicit integer programming

formulation. Two of the most basic heuristic approaches are described

below: the greedy and interchange heuristics.

The Greedy Heuristic.

Start with no facilities open. Given a set S of open facilities, open
that facility j ¢ S whose incremental value pj(S) = 2(Sy {j}) - z(S) is
as large as possible, and is positive. If no such facility exists stop with

the set S of open facilities.

Formally
. . 0
Initialization S” =0, p.(¢) = 7 c¢;.=f., t =1,
J fel 1 J
Iteration t Find jt = arg max pj(St°1).
j St-l
4

t-1

It pjt(st'l)'g 0 and t > 1, stop. The set S'~! is the

greedy solution with value ZG = z(St'l). If t =1, the

greedy solution is S1 = {jl}.

1f o, (st1) >0, st = sty g4,
s t

Set t «t + 1,

The greedy heuristic requires at most n iterations and each iteration

requires O(nm) calculations. Thus the overall running time is O(nzm).
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An_Example

We will use the following small example to introduce and motivate the
ideas developed subsequently. Real-world problems are typically much larger
(e.g. m = n = 100). Consider the uncapacitated facility location problem
defined by the data:

m=4,n=6, f=(3,22,2,33) and

N o O Oy
w O o0 o
Q W O o
N O O O
S w o O
-~ O O O

Applying the greedy heuristic to the example yields
iteration 1: (pl(o),...,ps(o)) = (16,15,15,12,10,13).

Hence j, = 1 and sl = (13.

iteration 2: (pz({l}),....ps({l})) = (1,0,-1,-1,-1).

Hence j, = 2 and 2« {1,2}.
iteration 3: (p3({1’2})’.-o906({1,2))) = (0,'1,-1,-1)0

The set S2 of value ZG 2 z(Sz) = 17 1is the greedy solution.
We can now use (4.10) to obtain upper bounds on the values of the feasi-

ible solutions produced by the greedy heuristic. In fact, such an upper

bound can be associated with any S < J.
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Define

U, (S) =max c,. all i¢S.
i JeS H

Note that

2(S) = U (s) - 7 f.
151 i jos J

and

o (S) = I (c, -T(SNT-¢f all jgs.
J ier U1 J

Thus, from (4.10)

W@(S)) = T T(S) + I [oy(9)]"
iel jgs

since Cy5 * E}(S)‘g 0 forall i¢ ! and je S.

In particular if SG is the final set chosen by the greedy heuristic

then, by the stopping criterion, Sj(SG) L0 jg SG 'so that N(UYSG)) =

iel

optimality by at most [ 6 fj, which suggests that it will yield a small
JjeS

error when the fixed costs are small in comparison to the profits.

Tﬁ (SG). We have shown that the greedy solution SG deviates from

Furthermore, we may obtain a better bound by considering all of the sets

produced by the greedy algorithm. Let E? = min ¢
jed
-'U(Sk), k *= l,000,t=1. Define a dual greedy value by W - min N(Uk).
k

i.j all i¢1l and

T

In the example, UO = (000 0), w(ﬁo) = 7 pj(¢) = 83, . (6,6,5,2),
jed
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- M@) = T T+ 1e20, 5= (6,8,5,3) and W(@D) = J T = 22, Hence
.js iel iel
"-*'s G

20 Wo = 20.

r*..‘

The bound we have given so far is an a posteriori bound for a particular
\:EI; instance of UL. In fact, a general relationship between 2% and W& that
" "
'{-': a priori applies to all instances of UL is given by

L
26 Theorem 5.1 [Cornuejols, Fisher and Nemhauser (1977b)]

N

oo
:; G e-1,,G 1
i "2 (=W + (IR

where e is the base of the natural logarithm and

N R= § mnec,. - 7 f..
2 fel jed W jig

{ A proof of Theorem 5.1 that uses linear programming duality is given in
.." .
) Fisher, Nemhauser and Wolsey [1978].
-'.;:'
'.;::.‘ For the p-facility location problem with cij 20 for all i and
and fJ. =0 all jeJ, we have R > 0. Thus we achieve a simple data

:':::: independent statement of Theorem 5.1.

-\‘:

-
o Corollary 5.2 [Cornuejols, Fisher and Nemhauser (1977)] For the p-facility
Ad

:-.:: location problem with c”. >0 forall i and j and fJ. =0 all je J
o G
oy /4 e-1 7%

2 =2 0.63.
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There are families of p-facility location problems for which this bound

is achieved asymptotically. Furthermore, since ZG_S Z<W( WG

G
Z Z W e=l ~
ma —_—y =y e D [ = (0,.86.
13 w’ue}-(e) 8

There are several variations and generalizations of the greedy heuristic
for which bounds similar to those of Theorem 5.1 and Corollary 5.2 are known,
see Cornuejols, Fisher and Nemhauser [1977b] and Nemhauser, Wolsey and Fisher
[1978]. For example, we can begin with all facilities open and at each
iteration close a facility that gives the largest improvement in the objec-
tive function so long as such a facility exists. A generalization of the
greedy heuristic is to start with the family consisting of all sets of cardi-
nality k, for some fixed k, and apply greedy to each of these (:) initial
sets separately; we then choose the best of the resulting (2) solutions.

None of these variations or generalizations, however, improve the
worst-case bound of the greedy heuristic. In fact, what is remarkable about
the bound on the greedy heuristic is not its value, but that no polynomial~
time procedure of any degree whatsoever is known for p-facility location
problems that has a better worst-case performance.

The salient feature of the greedy heuristic is that the maximum possible
improvement is made at each step. If this is not done, worst-case perfor-
mance deteriorates, even if a broader choice of impraovements is considered.

An example of such a heuristic is generalized interchange, see Nemhauser,

Wolsey and Fisher (1978). Here we begin with an arbitrary set SO. Given

B T - . e et W e o, L T N N S S e L e S e e e e e .
’ ‘.,. N .'-', . f.'v 'n’\{."/ <, S -'.--- 0N e S e L '(".. RS '-.‘. R _.-’ S et S AR A
) N R . o et
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:f*f St°1, at iteration t we select any set st such that z(St) > z(St'l),
Eéis |s‘\s"1|_5 1 and |st‘1\s"‘g 1 or stop if no such S* exists. Thus,
_35; at each i{teration, we are allowed to open a facility, close a facility or do j
o both so long as an improvement is made.

Eéﬁ The worst-case bound of generalized interchange is weaker than that of
;i; greedy. For example, under the conditions of Corollary 5.2, this heuristic
ok can guarantee only to find a solution of value at least half of the optimum
12% value. Of course, by starting with a greedy solution, the bounds of Theorem
~EF§ 5.1 and Corollary 5.2 are obtained. Nevertheless, they are not strengthened
“tﬁ\ by applying generalized interchange. On the other hand, greedy followed by
Léi; generalized interchange seems to give good empirical performance, see Hansen
-:Z' (1972) and Cornuejols, Fisher and Nemhauser (1977b).

o The dual solution u(S) given by (5.1) is motivated by its use in

%;i obtaining a bour on the given primal solution S. Conversely, giver : dual
i:& solution that satisfies (4.8), the complementarity conditions (4.14) suggest
‘;h considering a primal solution in which X5 = 0 if iEI (cij - "i)+ - fi < 0.
.

,fis Let

¥
(]
]

J(u) = (32 7 (c

[

+
g~ 4) - fy =0

The best solution that satisfies complementarity is obtained by solving

max { 7 max .. = - %},
SEJ(U) iel jeS J jeS

‘{‘ .“-' ~_' . K '.'- ‘. e et
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but this problem may not be much easier to solve than UL itself.

take any minimal set K(u) = J(u)

(5.2) max

C.. =
jeK(u) 13

25

Instead, we

that satisfies

maﬁ( )cij all iel.
Jed(u

Proposition 5.3 Given a u that satisfies (4.8) and u, < max «c..

1 = . 13
jed(u)

all i eI, and a primal solution K(u) defined by (5.2), let

kj = |3 € K(u): Cij > U]+ If k; <1 all i<, then u is an optimal

set of open facilities.

Proof :
zZ(K(u)) = 7 max c.. - ) f..
iel jeK(u) Y jeK(u) Y
If ki =0
max C.. = u; =u; + ) -u )+
jek(u) N T T gek(u)y W T
and if ki =1
max - C.. = up + ] (e;s = ui)+.
jek(u) W jek(uw) M
Hence, if ki_i 1 a1l i el,
2(K(w) = 7 7 leqi-u)te T fie T
iel jek(u) W ! jek(u) 3 del !
- ‘ -+ e
=z -u) - f) 4+ ) u
jﬁK(U) jel W ! J jel
= u; = W(u) by (4.11). 2
jel

...............
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Dual Descent
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In our example, with u = (6 6 4 3), we obtain J(u) = K(u) = (2,3,4)
and (kl,kz,k3,k4) = (1 110). Hence these are optimal primal and dual
solutions of value T wu, =19.
While Propositiogcé.3 may permit us to recognize an optimal solution, it
is 1imited to those cases in which mﬁn W(u) = Z and even then it is still

necessary to find an appropriate u and K(u).

Dual descent is a heuristic that begins with a u satisfying (4.8) and

then attempts to decrease the ui's one-at-a-time while maintaining (4.8),
see Erlenkotter (1978) and Bilde and Krarup (1977). It is surprisingly
effective, but not fail safe, in finding a u that satisfies the conditions
of Proposition 5.3. This descent approach, with some embellishments, is the
inner loop of Erlenkotter's DUALOC algorithm. The basic descent method
procedes as follows:

Begin with u? = max cij all i ¢ I. Cycle through the indices i ¢ I
jed
one-by-one attempting to decrease uj to the next smaller value of cij'
If one of the constraints

(5.3) S ey -mu)t < f. Al jed
iel 1J i -

blocks the decrease of uy to the next smaller Cyjo U {s decreased to the

J i
minimum value allowed by the constraint. When all of the ui's are blocked
from further decreases, the procedure terminates.

The reason for decreasing uj only to the next smaller cij’ rather than
to the smallest permissible value, is to keep the ki of Proposition 5.3 as

small as possibie.
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2
C Applying dual descent to our example yields the results shown in

w3
;%( Table 5.1. For the first four steps, each

o' fo- § (cip-u)?
!..‘1 j icl ‘j 1

‘.;:. Step

AN 0 8 8 6 4 3 2 2 3 3

X

X2 1 |6 8 6 4 3 2 0 2 3 3

24 2 6 6 6 4 3 0 0 2 3 3

VS

N 3 6 6 S5 4 3 0 0o 1 3 3

AR

‘N 4 6 6 5 3 3 0 0 1 2 2

v 5 | 6 6 4 3 2 0 0 0 2 2

v

%0 Table 5.1

3

\:32 of the u,'s is decreased to the second max in the row. Now up s con-

v, . . .

:_ sidered again, but cannot be decreased because the constraints (5.3) for
ol

a" j = 3 would be violated. Similarly, a decrease of up would violate (5.3)
fi;% for j = 2. However, ug can be decreased; but it is decreased only to 4
4$;i because (5.3) becomes active for j = 4 when ug = 4, Finally u, cannot
Eff be decreased because of (5.3) for j = 2. This completes the dual descent
‘t;? with u = (664 3) and W(u) = J u; = 19. Now, as noted above, J(u) =
> el

el K(u) = {2,3,4) and we also obtain a primal solution of value 19.

s -

P A possible improvement of dual descent, which is likelier to produce a
sl

Lot primal and dual pair for which Proposition 5.3 applies, is obtained by

'4-_:.:

li;; modifying the order in which the ui's are considered as candidates to
e decrease. [n particular, rather than just cycling through the ui's, let
N Qi(u) 2 (3 cij - u; 20} Then if u; s decreased and descent terminates,
-:i‘:

" ‘

:v :a

-Z,s‘

2
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;” ki & |Q;(u)|. Hence we choose u next if |Q(u)]| < [Q;(u)| for all
:f-;j el

if Suppose dual descent terminates with the dual solution u* and we

2 determine a primal solution given by K(u*) such that Proposition 5.3 fails
;g: to verify optimality. Then there exists an i such that ki >1l. By

1i£: increasing u, to its previous value and reapplying dual descent, it may be
=Y possible to improve the dual solution further.

ti:; We have sketched all of the basic steps of Erlenkotter's heuristic. An
ii? example in which it does not find an optimal solution to (4.6) is given by
i

= 220
(5.4) fa(222), c=| 202 }.

:_.'-"' 022

o . 0 .

o In this instance of UL, beginning with u = (2 2 2), dual descent terminates
EE with u = (0 2 2) and the embellishments don't help. However an optimal wu

. is (1 11) yielding W =3 and Z = 2. Nevertheless, this heuristic has

:g& performed extremely well on the problems that Erlenkotter has considered.
léﬁ He reports that in 45 of 48 problems tested, the heuristic found an optimal

K salution. To provide the capability of finding an optimal solution and

2}2 proving optimality, the heuristic is imbedded in a branch-and-bound algorithm
;é; called DUALOC. Given its simplicity, speed and availability, DUALOC may be
jf} the most efficient way to solve UL. However, it could bog down on hard

Ei problems in which the heuristic bound is not as good as the linear program-
%?; ming bound. Thus one is motivated to develop efficient algorithms for

i; solving the strong linear programming relaxation.

3

.
-----
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6. Algorithms and Reformulations of the Strong Linear Programming Relaxation

The strong linear programming relaxation (SLP) of the uncapacitated

facility location problem (UL) is

(6.1) Z,p = max ié[ jEJ Cij¥ij - jEJ f3%;

(6.2) jéJ Yij * 1 all i e I

(6.3) yij - xj <0 all i el, jeld
(6.4) Y35 205 x5 20 all iel,jed

For general integer programs, a linear programming relaxation must be
used in conjunction with cutting planes or enumeration to obtain an optimal
integral solution. However, for reasons which are barely understood, SLP is

an unusually powerful relaxation of UL in the following sense.

Observation 6.1 Very frequently, SLP has an optimal integral solution.

Of course, it is not true that all of the extreme points of the
polyhedron (6.2)-(6.4) are integral. Example (5.4) has a unique optimal
solution with x = (1/2 1/2 1/2) and it is easy to construct infinite
fanilies of objective functions for which the unique optimal solution to
(6.1)-(6.4) is fractional. Nevertheless, randomly constructed objective
functions and the few encountered in practice that have appeared in the
literature strongly support Observation 6.1.

A challenging problem for the combinatorial mathematician is to make

Observation 6.1 precise. For the practitioner, Observation 6.1 means that
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an efficient method for solving SLP will also be an efficient method for
solving most instances of UL. Even if one s unlucky, a very good upper
bound is typically attained so that a branch-and-bound algorithm should
terminate rapidly.

Even relativeiy modestly sized instances of UL cannot be solved by a
standard mixed integer programming package that uses SLP as a linear
programming relaxation because of the large number of constraints (6.3). For
example, m = n = 100 yields a problem with more than 10,000 constraints. In
this section, we consider several approaches for solving very large
structured linear programs. We will begin by briefly mentioning two direct
approaches to eliminating the difficulty caused by the large number of
constraints (6.3). Then we will apply some well-known reformulations and
algorithms including Lagrangian duality and subgradient optimization,
Dantzig-Wolfe decomposition, Benders decomposition and subgradient
optimization on the primal. Connections among those approaches will be
noted. Finally, we will consider a reformulation that involves the reduction

of the matrix C into an interesting canonical form.

Direct Approaches

The constraints yij £ x; are generalizations of simple upper bound

J
constraints in which the upper bounds themselves are variables. [t is
well-known how to handle fixed upper bound constraints in the simplex method
without expanding the dimension of the basis to include them. Schrage (1975)
has generalized this idea to incorporate variable upper bounds. He reports

computational results obtained by applying his method to SLP.
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; - : An alternative is to generate the constraints y1j £ xj as cuts only
ES when they are violated in an optimal solution to the weak linear programming
%f relaxation. This idea has been tested by Morris (1978). In the example of
e the last section, an optimal solution to the weak linear programming relax-
j: ation is Xo = Xq ® X4 ® Xg = 1/4 and Y3 * Yp2 * Y34 * Y45 * 1. We could
2.: then add the four violated variable upper bound constraints and continue to
- solve the linear program.
E:g The direct approaches are primal. Dual methods may be superior for two
i:s reasons. First, if SLP is incorporated in a branch-and-bound algorithm, it
1. may not be necessary to solve SLP to optimality at every node of the
:,. enumeration tree, i.e. at some of the nodes, a dual feasible solution may
}\’;i . suffice to bound the subproblem. Second, as we have already shown in the

last section, we can easily generate an integral primal solution from each
": dual solution.
N
My Lagrangian Duality and Subgradient Optimi zation
\'_', The Lagrangian L(u) of (4.12) forms the basis of a subgradient
:{.S' algorithm for solving the dual of SLP. The subgradient algorithm solves the
-.":: problem m;i‘n L(u).
i::’ The function L{u) given by (4.12) is the maximum of a finite number
:;j of linear functions. Therefore L{u) 1is piecewise linear and convex. Sub-
':":: gradient optimization [Held, Wolfe and Crowder (1974)] has proved to be a
\ useful method for minimizing unconstrained piecewise linear convex functions.
5:-33 This approach is an extension of the gradient method for minimizing smooth,
Z;:': nonlinear convex functions. Since gradients do not exist at non-differentiable

'~( R )
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e points of L(u), the gradient direction is replaced by a subgradient direc-

- .

tion, which will be explained below.

Given ut. an iteration of the subgradient algorithm generates a new dual

:; solution by the formula

(6.5) ut* . b oyt

t

lr. where aL(ut) is a subgradient at ut and y~ is the stepsize. If

o5 aL(ut) = 0, then ut is an optimal dual solution.

Suppose

Cal
CoLu) = T T eqayt - I faxt e T ou(le T oyt
: jer geg TN gy 3 e VT T ey T

{\i where {x}, yig} are defined in the proof of Proposition 4.2. If the {yiiq

are unique then

. (6.6) aL(u)1 =1. 7 yig all i e I
.-:": J'cJ

c~

%ﬁ is the gradient of L(u) at u. However if the {yig } are not unique,
o
- then any direction given by (6.6) or convex combinations of such directions

O is a subgradient direction. Although a step in a subgradient direction does
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33
not guarantee a decrease in L(u), it can be proved that with an appropriate
choice of stepsize the iterates given by (6.5) converge to an optimal solution
[Polyak (1969)]. Cornuejols, Fisher and Nemhauser (1977b) have solved the
Lagrangian dual by subgradient optimization and report computational results.

In our example, if we start with u) = (8 8 6 4), then L(u®) = 26 and
aL(u) = (1 111). With a stepsize of y0 = 2, we obtain u = (6 6 4 2)
and L(ul) = 19, The solution to (4.13) is not unique; however, the solution
Xo ® X4 = 1, Xg = 0 otherwise and Y12 = Y22 = Y34 = Y42 * 1, yij =0
otherwise yields aL(ul) = (0000) and verifies the optimality of ul.

Dantzig-Wolfe Decomposition

For all non-empty R c I, let x? =1 {f facility j serves only these
clients in the set R and A§ = 0 otherwise. If k? = 1, facility j yields
a profit of ° cij - fj. Thus UL can be reformulated as the integer program

ieR
~ - ] R
(6.7) Z=max 7 T (7 c £,
jed REI der 3 I
(6.8) IR VER all i ¢ I
jed Rai J
(6.9) SEVES! all jeld
Ré1 4

(6.10) Afe (01 all Rl ge
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The equations (6.8) state that each client is served by exactly one facility
and the inequalities (6.9) state that each facility can serve only one set of
clients.

We are going to study the linear programming relaxation of this integer

program where (6.10) is replaced by

(6.11) Ay >0 all Rel, jed

R
3

Proposition 6.2 Let 7 be the optimal value of the linear program (6.7),

(6.8), (6.9) and (6.11). Then 7 = ZLP'

Proof Apply Dantzig-Wolfe decomposition to the linear program (6.1)-(6.4)
with master constraints (6.2) and subproblem constraints (6.3), (6.4) and
x; <1 all j e J. Substituting the subproblem extreme points into (6.2)

J
yields (6.8), and (6.9) are the convexity constraints for the subproblems. [J

Before considering an algorithm, we will make some simplifications. If
1 (ci. -f)> ) (cik - fk), then kz = (0 1in every optimal solution.
ieR W3 e
Hence for each R, we need only one variable, say ‘g with price

R Tk Gisr) Ty 2L Gt T

Furthermore the constraints (6.9) are superfluous. This is true because if

R 1 R' 2y, then (6.8) guarantees that Ap + Ap, <1 and if RaR' =6 and
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. = i(R') =
L J(R) = j(R*) = k, then f. 20 implies dpugt 2 dg * dpee
:;:1 Thus we can restate the integer program as
4 -\._-
e
| (6.12) Z=mx T da
e Rér "R
A (6.13) T Ap =1l all fel
o~y Rai R
l'f
;:.};Z (6.14) AR € {0,1} all R<I.
2N
,\._
/:'.'
:{& This formulation has 2""'1 variables and m constraints. Curiously, n
'Ef does not enter into the size of the problem so that for fixed m, this
tﬁ formulation can be solved in polynomial-time.
- The linear program (6.12), (6.13) and
‘s.'.
o
b
Y
N (6.15) A\g 20 all Rel
o
‘ \:\ .
§:ﬁ can be solved by column generation. Suppose we begin with m columns, say
D
:f}' those for R = (i}, i = 1,...,m. Then the primal solution is xg =1 for
S R=(i},i=1,...,m, and the dual solution is u9 = max(c,., - f.) all
A 1 JeJ 1J J
n2
. iel.
‘1:.'
e We now see if any of the nonbasic columns have a positive price. This
A
P2 can be done at iteration p by solving for each j ¢ J the subproblem
.. L]
a7
-
% (6.16) t? = max - (;: = up)y.. - f.x.
o - i jep WO PRSI
P
¢
vt
.‘..*
CACS
Vol
=
o
~
“» "y

P
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’ 6.17 L.o= X, < i
i (6.17) Yig = %; L0 all i el
-
-;t (6.18) yij ¢ (0,1}, xj e (0,1} all i el
o A s p . ) . R .
N since ) \c‘.J - ui) - fj is the price of variable xj. We obtain

) ieR

~

4 p = n - p + - + p = .
- tj (iﬁl (Cij ui) fj) . If tj 0 all j € J then the current

i solution is optimal. For each k such that tf >0, let Rk be any set

N

I satisfying (i c, - ul >0} cR < {i:rc, - u?>01. Wenow add to the

- - - ik i -

S linear program the variables Ap  for all k such that tE > 0.

. k

. Garfinkel, Neebe and Rao (1974) have obtained computational experience with
o

-l this type of algoritnm.

he

N An important feature of this approach is that both lower and upper bounds
. , on ZLP are obtained at each iteration. By primal feasibility, ZLP pd Z u?;
"", ‘EI

{? and from (4.12) we see that Z,,< J t7+ ;ouf s W(uP). Moreover, as
- WP=yeg 3 el

ii well as obviously being a primal method, it is also a dual method that can be
A compared with solving the Lagrangian dual by subgradient optimization. Here
ﬁf the ui's at each iteration are determined by solving a linear program, while
gg in the previous method the dual variables are determined by moving in the

- direction of a subgradient of the function L(u). An advantage >f the column
_%I generation approach is that its lower bounds are determined 1n a less ad nhoc
ij fashion. Furthermore, whenever the linear program has an 1ntegral solution a

feasible solution to the integer program is also found.

In our example, we start with an ini1tial basis consisting of the four unit

columns R, = {i}, i = 1,...,4 with objective coefficients do = 35 =6,
FY

2
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de =4 and dy = 1. This yields the dual solution u = (5 6 4 1).
3 4
Solving the subproblems, we obtain to =(020100) and thus
17 S-ZLP L 20. We generate two new columns R5 = {124} and R6 = (3 4
with objective coefficients ds = 15 and d6 = 6. The next master linear
program yields the primal solution x; = xé =1, ké = 0 otherwise and the
5 3 i
dual solution u1 = (664 3). Now } =0 all j e J so that the primal
has been solved. In terms of the originai variables, we have Xy = X4 2 1,
xj = 0 otherwise.
Primal Subgradient Algorithm
With fixed x.'s, 0 <x, <1 all jed, J x, >1, SLP is
J -J- jEJ J -
(6.19) Zo(x) = =] f.x. +max } J C..¥:.
Lp jed JJ iel jed 17N
(6.20) _2 Yij * 1 all i e 1
jed
(6.21) Yij&x Al iel jed
(6.22) yij-z 0 all i el, j e do

Let Vi(x) be the profit from the ith client. Then (6.19)-(6.22) decomposes

as follows

(6.23) Zolx) = -] foxi+ [V

ahere for each i ¢ [
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.24 a
(6.24) Vi(x) = max JﬁJ €i5%i;
(6.25) Voyis =1
jeg3 v
(6.26) YijLx5 a1 Jed
(6.27) Y320 all je .

This linear program can be solved greedily. Let Cij > Cij > vee 2
1~ r -
p-1
C:c o ThEﬂ y- =z X. k = 1,---,p - 1, y-- = 1 - z ) S ’ y.. = 0
Jn e Ty 3, k=1 Ik’ T
p-l P
otherwise where J <1< 7 x%;.
I M P
The dual of (6.24)-(6.27) is for each i e [
(6.28) Vi(x) min u; + LJ X Wi 5
(6.29) u; + "ij 3-cij all je J
(6.30) "ij~3 0 all j e J.

To solve (6.28)-(6.30), observe that Wij (cy: = “i)+ and that it

sufficies to consider u; e {C;1,+++,Cj,}+ Hence

A

(6.31) V.(x) = min(c,, +
! ked Tk 2'J
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{ Since Vi(x) is the minimum of a finite number of linear functions, it
AN

N is a piecewise linear and concave function. Therefore Z,p(x) is also

n.:{

A piecewise linear and concave and

< .

N Zip = max Zyp(x)

:

)

(6.32) Oixj <1 all jed

o

\:.‘

-'; T X > 1

Sf. jed 37

N

*i can be solved by subgradient optimization. If there is a j such that

PP

f: " ¢;, - f. >0, the constraint 7 x. > 1 1is superfluous. If not, we
SN .i"‘I 1] J -"‘J -

N € Je

. can add a constant M > m'in(fj - : cij) to some row of matrix C without
” jed iel

[y changing the solution while assuring that ° X > 1 will be satisfied by
M jed

; any optimal solution. In the remainder of the chapter, we assume that

'y L]

T x: 21 1is not needed.

] jed J

P A subgradient of Z, ,(x) at x {is of the form

_:::

o +

- .33 T . - - f, j

= (6.33) aV(x)J 51 (cU Cip) i all j e d

o
o

‘ where p 1is determined from a solution to the ith subproblem (6.24)-(6.27),
DK i.e. cip’ min {cij: yij > 0}. Note that because of the bounds on the vari-
- J

ables, if x, = 0 then aV(x). is replacedby [~ (c.. - ¢ )+ -f£.1,
e i i sep 13 i i
¥ €

o - . = i d by min(0, " (c.. - Y .f).

and if X 1 then aV(x)J is replaced by (0, oy (c1J cip) J)
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Cornuejols and Thizy (1982b) report their computational experience in
-.i;‘-ﬁ . soiving (6.32) by a subgradient algorithm,
\ The results of attempting to solve (6.32) by subgradient optimization for
' our example are summarized in Table 6.1. An optimal solution to SLP is
N obtained at iteration 3, but the subgradient formula (6.33) is not adequate to
E:.S verify it,
‘.”'l
AT
™y iter- V(x Z, o(x 3V(x ste
> ation X (x) Lp (X (x) STz
o
:)-_é 0 o 1 1 1 1 0}8 8 6 4 17 «3 -2 2-2-3-3]1/8
RS
abe 1 0 1/21/21/21/4 0§ 7 7 9/2 3 18 -1 1 0 1-1-1]1/4
".:'-.‘_' 2 0 3/41/23/4 0 0| 7 15/221/411/41 37/2 | -1 1 0-1-1=-111/4
o 3lo 1 wy21 0 0|7 8 6 3| 19 |-3-20-2-2-2
.-:'.'
p— Table 6.1
N
-.}q
o3
e
o Benders Decomposition
" ﬂ An alternative way of using (6.23) and (6.31) is to formulate the linear
" program .
‘, (6.34) Z . = max - X
- LP iel jed d J
. - + .
= (6.35) Iy = T (epym ) R Leg Al del ke
jed
i\ (6.36) 0<% <1 all e .
1
-
*,"
l_:.
$'
%
3
.~$f
7 N .

P O N S T N I U N AL JL T AL P e T T T e T et e Pt e e T T T Y s e vt s
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This is precisely the linear program that arises when applying Benders
decomposition to SLP. But now we have mn constraints of the form (6.35).
However, we can think of these as cutting planes and generate them only as we
need them.

In particular, suppose we have only a proper subset of the constraints
(6.35). We solve the relaxed linear program and determine an optimal
sotution (x9,v9). Now we use x% in (6.24)-(6.27) to determine Vi(xq)

all i e I. If

(6.37) vox9) cviloan e,

then (x9,v9) satisfies all of the constraints (6.35) and x¥ s an optimal
solution. If not, each i for which (6.37) is violated specifies a violated
constraint of the form (6.35). These are added to the linear program and we
continue.

In our example, we begin with the constraints (6.35) determined by the
second maximum in each row, i.e., V; - 2xq <6, V, - 2x, < 6, V3 - x4 <5,

and V4 < 4. A solution to the linear program is V1 = (685 4) and x1 =

(010000). Then by solving (6.24)-(6.27), we obtain V(x%) = (6 8 0 3)

and generate the constraints
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V4 -XS-X6$3.

Now we obtain the solution V2 = (6 86 3) and x2=(010100). Since
V(xz) = (6 86 3), all of the constraints of (6.35) are satisfied and x2
is an optimal solution.

Magnanti and Wong (1977) have used a variation of this approach and have

developed stronger inequalities in an attempt to impose integrality on x.

Canonical Reduction

We now develop another formulation that involves the disaggregation and
aggregation of clients, see Cornuejols, Nemhauser and Wolsey (1980). The
aggregation of two clients 11 and 12 means to replace clients il and
iz by a single client { such that

(6.38) Cii €4 5 %S 5 all jed .

The disaggregation of client {1 1{nto two clients il and iz means to

replace 1 by two clients 11 and i, such that (6.38) holds. While

aggregation is uniquely defined, disaggregation is not.

- R P P I T SRR SR Y

b
. ~e
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In general, aagregation yields an underestimation of profit and disaggre-
gation overestimates. This is true, because if (6.38) is satisfied the greedy
solution to the linear program (6.24)-(6.27) implies Vi(x) < Vil(X) * V. (x)

2
for all x such that 0 < "j < 1. We say that aggregation or disaggregation

AN
N is valid when for all x such that 0 < x; <1
. \
(6.39) Vi(x) 2 V. (x) + V. (x).
» <, 1 l
oy 1 2
2
- Proposition 6.3 Let Sk be a permutation of {1,2,...,n} such that
> 4
c“:r*' C > C ) see > C
;:_;_: ksk(l) - ksk(Z) -~ = ksk(n).
‘o . .
a. If i, and i, h tation h Sy 3OS . i = 1,000,
::_.:- 1 d i, have permu ons such that 511(3) SIZ(J)’ j=1, n
then (6.38) is a valid aggregation.
b. If i, i, and i, have permutati h RS, iy S .
‘7"-‘17 1 an 2 ve permu ons such that SI(J) 511(‘]) SIZ(J)'
::: jJ=1,...,n then (6.38) is a valid disaggregation.
o p . =S, ] i i -
i‘;, roof a. If S'I(J) slz(J) for all j and rows b and 1, are aggre
: ): t L[] - = = . = : * j = ees L]
;zj( gated by (6.38), then Si(3) 511(.]) S'Z(J) j=1,ece,n. Thus
.\.
—p the greedy solution to (6.24)-(6.27) implies that (6.39) holds.
::.‘: b. The proof is similar to that of a. and is left as an exercise. O
s
}:1 The following proposition shows how a row can be disaggregated.
«
..‘:' i i . ~ ) s e H 3 ) [N ] > i )
% Proposition 6.4 Suppose c1si(1) > > clsi(p-l) > C\Si(p) > > clsi(n)
'::I;: Then for j =2 1l,.cee,p -1
.’--l

L
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‘ c =L and ¢ ; ¢ -
N tysy () 7 sy ) f2s;, ) " S5 (1) T Sy (p)
o
’2'{'. and for j = py..e,n
)
' ¢ = sy and ¢ =0
:' ’151 (i) 151(3) 1251 (i)
o 1 2
("_"
-
i is a valid disaggregation of row i,
§ 3 Proof The condition of Proposition 6.3b holds. [}
8
) ‘ We can apply Proposition 6.4 recursively to disaggregate a row i into
_. at most n rows, 11,...,1n with the following properties:
N (1) ¢ e Oy } for t=1,e,n, (1) v >0 for t> 1, (ii1)
N t t t
€, ;=1 for j = 1,...,n, (iv) ¢, . =0 implies ¢ . =0 for
. Wy ’ iyl Yead
:::: t = 2....,""1.
3
.,{: To do this, suppose Cisi(q) = .= cisi (n) for some q {n.
) Apply Propositton 6.4 with p = q. This yields
o
5
'~’ =
v ‘5, () T Sisy(a) 1= aeeean
1 iy i
‘:: c : - C j = 1,....q - 1
5 s, (3) = "1s;(aq)
‘O
[] C . =
re| 2 i,
ey o
o 0 I ® Qrecesns
\.\:'
\
.
="
3 o s
: Row il ts in the desired form and if c’si(“ = cisi(jﬁ-l)’ J = lyeee,q = 2
s0 is row 12. Otherwise let 2 be the largest value of j for which
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; - cisi(x-l) > cisi(l)' Now apply Proposition 6.4 with p = & to disaggregate
4 I
N row 12. Here we refer to the two new rows as iz and 13. Thus

Z'::
BAS
o .

“s(2) " Cisy(a) YT breeeng = 1 -

.t:
15 c W S

2% 12512(J)

>
- 0 J = Gsesesn

ey .
- r
cisi(j) TCis,(2) § = liean -l

c": ﬁ

A C., N =
-: 1 35.i 3(J )
;'E 0 j = l,...,ﬂ.
3 C
-':,‘
“l
: Row 12 is now in the desired form and we now disaggregate row 13 if

~d
325 necessary. Since at each step, the row to be disaggregated has at least one
o
:j more zero than the previous row, the procedure takes at most n - 1 steps

and yields at most n rows each having the desired property.

o
:‘5 Consider
D

\‘

] (cil Ci2 €43 c14) = (422 -1).

e

-
'}3 We obtain

X
( ) = (-1 -1 -1 -1)

e C; 4 C ¢ ¢ 2 (=] =1 <1 -

§§ 111 112 113 114

and

o
", (5,1 €42 4,3 Ci,g) = (3 330).
49 2 2 2 2
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Disaggregating row 12 ylelds (3 330) and (200 0). Thus a client
represented by the row (4 2 2 -1) can be replaced by 3 equivalents clients:
(=1 «1 <1 «1), (3330) and (200 0).
Suppose each of the clients 1 ¢ I 1{s disaggregated in this way. Now we

may obtain pairs of clients say ‘t and kz such that < j +# 0 and
t

cp j # 0 if and only if j ¢« T. By Proposition 6.3. a., these two clients
2
can be aggregated into a single client with profit ¢ j + cp j for jeT
t ) )
and 0 profit for j ¢ T. Finally, a client whose profit is constant for all

j € J can be eliminated from the problem since this client produces the same

profit for all feasible x. H
To summarize this discussion, we can transform the matrix C into an

equivalent canonical matrix R containing at most min(m(n-l),Z"-Z) rows.

Each row of R represents a set T = J\¢ and there is a profit rr for all

Bl

j e T and a profit of zero for j ¢ T.

In our example,

{
i6 6 66 0 6 | !
/ client 1

joo2000

6 6 6 0 6 6

client 2

020000 3
R’ 6 :

}303330 .

: ) 1

i 200 200 client 3 :

\000100 ]

\220222 : .

\010011_ client 4 :

00001 1 ’




AL SRR LR A C A - W e e e WL WLV R e T T ST e DAL AL A AR R PLABL T A AN

47
We will now use this transformation to obtain a reformulation of SLP.
3f‘j Given x, 0 S.Xj'ﬁ 1 all j ¢ J, the problem for the client that represents

QH?_ the set T that is equivalent to (6.24)-(6.27) is

Ve(x) = Fe(min( T x;, 1)) = ro=ro(l - T x)%
. T T jor J T T jeT J

Let Ty be the fraction of client T not served. Then

- Vp(x) = rp + max(-rony)

e > 1 = 7T x,
o =" g

1:1-_>_0. r

*

& NG
CUNCIA I
v F AN
.

A R

Let be the collection of subsets of J that are represented in the profit

,
Ly
E

'l

e

. matrix R. Then

(6.40) Zip= " orpemax(- 5 oreme- T fix.)
L T rer TV geo 3

N (6.41) mp+ Dox:21 allTeT
\ jer !

o (6.42) 120, x,20 all TeT, all je

We rewrite the objective function as
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i (6'43) Z* = Z - S l' 2 - min( : f‘ T + ‘:‘ f.x-) L]

o LP P g T Ter U7 ey 3

2
oy The dual of (6.41)-(6.43) is

'

R (6.44) zt )

\: . 2 - mx u

ol (6.45) T oup < f, all je d

By 1o 3

..*

e (6.46) 0<up&ry all TeT.

k‘
e

fj The linear program (6.44)-(6.46) has at most m(n-1) variables and n

constraints plus upper bounds on the variables. It is the most compact

Lu' linear programming formulation we know and has the structure of the linear
P programming relaxation of a set packing problem. In our example, see the

ﬁ matrix R given above, there are only 10 variables and 6 constraints other
ad than upper bounds. In comparison, the original linear programming
1 ~v N

:: formulation of SLP ((6.1)-(6.4)) has 32 variables and 28 constraints. In

o

*3 experimenting with some k-median problems, Cornuejols, Nemhauser and Wolsey
GQ7 (1980) have observed that when the simplex method (with upper bounds treated
hhY
K implicitly) is applied to the various linear programming formulations, the
.2 formulation (6.44)-(6.46) was by far the best one in terms of simplex pivots
{j and running time. In addition, the formulation (6.44)-(6.46) provides a nice
;; interpretation for the dual descent heuristic given in Section 5. We leave
:& this as an exercise.

o

7

’,
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Summary

This section has emphasized the description of exact algorithms for the
solution of SLP. These algorithms, and effective heuristics for the dual,
such as dual descent, can be viewed as subroutines that must be embedded
within a branch-and-bound code based on enumeration of the 0-1 variables x..

A second viewpoint is based on a specific MIP (mixed integer programming)
formulation that can, in principle, be tackled by any general purpose mixed
integer programming package. Here candidates are the original formulation
(1.1)-(1.4), the Benders formulation (6.34)-(6.36) with JK (0,1) all
j € J, and the new canonical formulation (6.40)-(6.42) with Xj € {0,1}) an
J ¢ J. Such formulations are also amenable to treatment by algorithms other
than branch-and-bound--see for instance the cutting planes for (l.1)-(1.4)
developed in the next section. However, attempting to fit any of these
formulations into a general purpose package leads to difficulties of problem
size since each of these formulations involves O(mn) constraints and/or
variables.

Having been inundated with various heuristics and algorithms, the reader
has the right to ask for a recommendation on the appropriate method to use.
Unfortunately there is no simple answer.

Among the special purpose branch-and-bound algorithms QUALOC appears to

be the best. It is a generally available easy to use FORTRAN program that is

very fast on most problems.




'l

¢
LR

f‘\«'.‘( o

%
’l

-

AR

I'I'

e

L] _l'}"

G 4yt

o7 -'.-'.5.1‘ :' P

.
RN
2ttt

NN

50

If one insists on solving the strong linear program to optimality, which
may be necessary for the harder problems, solving the Lagrangian dual by
subgradient optimization provides an easy to program and relatively fast
approach. If the simplex algorithm is to be used, the linear program
(6.44)-(6.46) has a significant advantage in size, and limited computational
experience suggests that it is best in terms of time and pivots.

The main advantage of using a general purpose MIP code is that
complicating constraints create no difficulties, whereas a special purpose
code becomes unusable. In addition, work is in progress on general purpose
codes which will be capable of working with the compact formulation : yij‘g

mxj and generating violated variable upper bound constraints y.. < x. as

="
needed; see Martin and Schrage (1982) and Van Roy and Wolsey (1983). This

should permit such codes to handle medium sized UL's as general MIP's.
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{: 7. Polyhedral Results

Extreme Points of SLP

- We have observed that the strong linear programming relaxation
J

. m n n
s max ¥ 7 oco.yi.- 7 fix.
21 js1 WTN 55 3

f:5 ’ subject to

=1 i = 1l,0ee,m

o (7.1)

A

xj 1 i=1,..e,m and j = l;...,n,

‘}s; ‘ very often has integral optimal solutions. Although this phenomenon is not
well understood, some properties of the polytope (7.1) are known. When

= m<2 or n <2, it has been shown by Muckendi (1975), Krarup and Pruzan

2
&

(1983) and Cho et al. (1983) that all the extreme points of (7.1) are

A
& \. *

integral. In fact, the constraint matrix is totally unimodular in that case.

PP g

iy
%

s Yy
.

However, even when m =n = 3 the strong linear programming relaxation may

011
have fractional optimal solutions. For example, when C =<:l 01 jand fj 2 ]
110

for j =1,2,3, we have remarked previously that xj = 1/2 for j=1,2,2

o ¥ S{
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¥
4
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and yij =1/2 for i2£j, 0 for i =73, where i, j = 1,2,3 1is the unique
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optimal solution.
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The fractional extreme points of (7.1) are completely characterized by

the next theorem. For a given non-integral solution (x,y) of (7.1) let

J1 2 {jed: 0K xj <1} and

I1 2 (i ¢ [: yij =0 or xj for all j and yij is fractional for some j}.

Let 3y = 1 if ¥i3 0 and 0 otherwise, and denote by A the |Il| X idll

matrix whose elements are aij for i ¢ Il’ Jje Jl.

Theaorem 7.1 [(Cornuejols, Fisher and Nemhauser (1977a)]. A fractional solution

(x,y) of (7.1) is an extreme point of (7.1) if and only if

(i) x. =max y.. forall j e J
I e M !
(i) for each i ¢ I, there is at most one j ¢ J with 0 < Yij < X

(iii) the rank of A equals ,Jll.

The 3 conditions of this theorem are easily verified for the example given
above.

Since the polyhedron defined by (7.1) has many fractional extreme points,
the type of objective function that is optimized over this polyhedron must
play an important role in the attainment of integral optimal solutions.
Frequently, C = (cij) is defined over a network with the property that

Cy; = 'di(tij + qj) decreases as a function of i, the further i 1is from

J
j in the network. (l.e. if i

is on the shortest path from i to
in the network then cij S'Ci.j). The influence of this property on the
solution of SLP for tree networks will be discussed in Section 8. For more

general graphs, it is an interesting open question,
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When C = (Cij) is a general 0,1 matrix and fj =1 all j e Jd, UL
is the problem of finding the minimun number of columns that cover all the
rows of the maxtrix C. (A set S of colunns covers row 1 if cij =1
for at least one j ¢ S.) This problem is known as the set covering problem
and often has fractional optimal solutions.
Some valid inequalities for UL that remove fractional extreme points of

the SLP polytope are given in the next theorem.

Theorem 7.2 Cho et al. (1983). Let B be a k x k nonsingular 0,1 matrix

-1

such that B " e > 0, where e is a column vector of ones. Index the rows

and columns of B by I cI and J cJ where |I | = [J | =k. Then
) ) -7 x. < |k -e8le
R B R4 K I It [ e

lelk JeJk JeJk

1s a valid inequatity for UL. It cuts off at least one fractional extreme

point of the polytope (7.1) if eT B 1 1s not integral.
011
For example, if B={101 we generate the constraint y +y +
110 12 13
Yo * Yozt ¥31 *t Y3p < X{ X5 = X3 <1, which cuts off the fractional

extreme point given above.

Conversely, it is easy to show that the family of valid inequalities
defined 1n Theorem 7.2 cuts off all the fractional extreme points of the
polytope (7.1). However, in general new fractional extreme points arise.

Ae now turn to the 1dentification of valid inequalities for UL that

define facets of the integer polytope.
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Facets of the Integer Polytope

PRI IGES WL ...-\'..‘ RSRGRN .':.._:..‘: S P A TN RORSAS -_"\ U R

Let Pm n be the polytope defined as the convex hull of the integer

solutions to the system (7.1)

lyeee,m

o~
<
-
Cde
—
—
[}

ﬁOiy.iL<l i=1,.ee,m and j = 1,...,n

l,eee,m and j =1,¢s.,n.

X:s ¥:.: € {0,1} i
37 7]

\

A set of k + 1 points wo, wl,...,wk are affinely indebendent if the

k vectors w1 - wo,...,wk - wo are linearly independent. A polytope has

dimension k if it contains k + 1 affinely independent points but not

more. An affine space is the intersection of hyperplanes. The smallest
affine space which contains a polytope P is called its affine hull, The

polytope ﬁ“ n has dimension mn + n - m and affine hull

mn n

n
{(X,y) € R X R y]j = 1 fOT 1 = I,CCU’m}'

j=1
A face of a polytope P is aset F =P n {x: ax = b} where ax < b

is satisfied by every x ¢ P and ax < b for at least one x ¢ P. The

inequality ax < b 1is said to define the face F. Any face of a polytope 1s

itself a polytope. When its dimension is one less than that of the polytope

P, the face F 1is called a facet. To describe the polytope P by a linear

system, it suffices to have a description of its affine hull and one defining

inequality for each facet of P.

-----------

o " AN L P CaRCaNC 4

..........................
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If such a description of P were known then, in principle, UL could

m,n

be solved as a linear program since the extreme points of Pm n 2re
1]

precisely the feasible solutions of UL. However, a complete linear system
defining pm,n is not known explicitly. Even if one were, only relevant
portions of it would be generated to solve an instance of UL, i.e., the
facets of Pm’n would be used as cutting planes in the spirit of Padberg and
Hong's (1980) and Grotschel's (1980) work on the traveling salesman problem.

Whatever the algorithmic use of a partial linear description of Pm,n
the first step is to identify some of its facets.

Theorem 7.3 The following inequalities define distinct facets of Pm n
b ]

(i) Yij S_xj for all i ¢, jed
(ii) hjzo for all ie¢l, jed
(iii) xj.s 1 for all j ¢ J.

These facets are called the elementary facets of Pm,n' The next theorem
provides a necessary and sufficient condition for an inequality with coeffi-

cients of 0 or 1 to define a facet of Pm ne

Assume that ['<c I and J' < J are two nonempty sets and that

B=(b,,) iel'yjed' isa 0,1 matrix with no zero row. Consider the

ij

inequality
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(7.2) b T ox, < r.

e jEJ' EUF TR

Define the graph G as follows. It has a node associated with each
variable yij' iel, jed, and xj, J eJ. We will use the same notation
for a node and its associated variable. For all i¢ I and j ¢ J, the
node yij is joined by an edge to the node xj and to every node Yik for
k 2 j.

Let N' be the set of nodes {yij} iel'y jed' {xj} jed' and let
G' be the subgraph of G 1induced by the node set N'. Given a graph H we
denote by a«(H) the maximum size of a stable set in H (a stable set is a
set of mutually nonadjacent nodes). Finally, an edge e of H is critical
if «(H - e) > «(H), where H - e denotes the graph obtained from H by

removing the edge e.

Theorem 7.4 [Cornuejols and Thizy (1982a)] The inequality (7.2) is a facet

of Pm n if and only if the following set of conditions is satisfied
’

(i) r=qaG') - |.J|
(i) G' s connected,

(iii) for every 1 ¢ I', j € J' such that b.,. = 1, the edge (xj, yij) is

iJ
critical,

(iv) for every j, k ¢ J', there exists a sequence of critical edges

(yflj. yilxl), (y‘zll' y‘z*z)""'(y" , y,-sk)-

7 Y (s
s-lls-z 1s-lls-l 1s’“s-

1
(v) for every ie I, j ¢ J such that yij g N', the inequality a(G') <

2(G") s strict, where G" denotes the subgraph of G induced by

N' . {y‘lj}'

.............

WS TRETT AY
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These necessary and sufficient conditions can be used to prove the next
theorem, which provides constructively a large class of facets for the
uncapacitated plant location polytope.
For 2 <t <2<n, define Bfg = (bfg) as a matrix with (é) rows and
2 columns whose rows consist of all distinct 0,1 vectors with t ones

and 2 -t zeros.

Theorem 7.5 [Cornuejols and Thizy (1982a)] For any pair of integers & and t
such that 2 <t <2< n and (i) £m, and any sets I'<c I, J'c J such that
'I'l = (%) and 'J'l = 2, the inequality

o it -

o - 2 - -
«::;II J;J‘ ij yij j;Jl Xj i (t) tt o 1

defines a facet of Pm,n'

23 011
For example, take t =2, 2 =3,8° =1 0 1 }, and I' =4' =
1 10
{1,2,3}. According to Theorem 7.5 we get the facet

Yig * Y13 * Yo Y Y3t Y3 Y3t X - Xy = X3l L

which is identical to the valid inequality of Theorem 7.2 that we obtained
above with B = 823.
Other facets obtained by 1ifting odd holes or circulant matrices can be

found in [Cornuejols and Thizy (1982a)]. Additional material can be found in

Cho, Padberg and Rao (1983).
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! 8. Polynomially Solvable Cases
3:-_':: By a special case of UL, we mean a problem of the form (1.1)-(1.4) all
\':'
_‘\-I-‘ of whose instances are described by a subfamily of objective functions (C,f).
\."
’ In this section, we consider two special cases of UL that have the following
.-jf:, significant properties.
; .{o
L 1. SLP always has an integral optimal solution
' 2. The problem can be solved in polynomial-time.
LK
3 A. Economic Lot Sizi
;*ﬁ . Economic Lot Sizing
;._ There is a demand d; in period i, i =1,...,n. The fixed cost of
. producing in period j 1is fi > 0. The variable production cost is pJ..
s-
e
‘::j The variable storage and backorder costs are c; 20 and cJT 2 0 respec-
i::j tively. 'In UL, yij now represents the fraction of the demand of period i
‘_\ produced in period j, and xJ. =1 if and only if there is production in
'C period j,
' + + . . .
‘:_: C1J- = '(pj + CJ- +v'o+ C,'.l)d1 ' 1f b | ->_J
or and
~
. . = - - - ) . . .
2 Cij (pJ. + c; +oaot ciﬂ_)d1 if i <.
‘-., 8. The Tree Location Problem
~
- Let G = (V,E) be a graph with node set V and edge set E and suppose
..: that G is a tree, i.e. there is a unique path in G between each pair of
.."_ nodes (G is connected and acyclic). Here the nodes represent both clients
'
- and facilities. The cost of opening the jth facility is fJ. 20 all jeV.
o
. Associated with each edge e ¢ E, there is a given non-negative distance. The
-c;:
N
&

R

. .."-f;: - -f;;-‘..".\v'.'.--'-;. .« .'-{:.._ PR .--._:,. AT -_._;.._:..':‘..:,.:.. :...:..~..:_:.,.;_ '..'.‘:'.‘._. ‘e, ...:_._:_‘ LI 4._.:.: et ’.'_:.' :\,.. - -.‘.._._ -

. .~ W
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distance between nodes 1 and j s dij = sum of the edge distances along
the unique path between 1 and j, for all i, j ¢ V. There is also a

non-negative scaling function W, associated with each node i. Let cij =

'widij’ i, eV, 1 2#j and ¢y = 0 all i e V.

The induced subgraph of G generated by Vj < V is the graph Gj =

(Vj,Ej) where Ej = (e ¢ E: both end nodes of e are in Vj}. Gj is said

to be a subtree of G if Gj itself is a tree.

Theorem 8.1 [Kolen (1982)] There is an optimal solution to the tree location
problem iﬁ which the set of open facilities S c V is such that for each
je S, Vj = {i e V: node i 1is served by node j} 1induces a subtree.
Moreover, this solution is also optimal to the linear programming relaxation
of the tree network problem,

A similar result applies to the lot sizino problem. Consider the tree
G= (V,E) where V = (1,2,...,n} and E = {(i,i+l): i = 1,...,n=1}. Here
G is simply a path fromnode 1 tonode n so that V'c V is a subtree

or a path if and only if V' = {i, i+l,...,k} for some i and k, 1 <i <n

and k > 1.

Theorem 8.2 [Krarup and Bilde (1977)] There is an optimal solution to the lot

sizing problem in which the set of periods having positive production S < V
is such that for each j ¢ S, Vj = {{ ¢« V: period i 1is served by production
in period j} 1induces a path. Moreover, this solution is also optimal to the
Tinear programming relaxation of the tree network problem,

The fact that an optimal solution to these problems induces subtrees that

partition V is not surprising. In the tree location problem, suppose that
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node 1 1{is on the path joining nodes j and k and node j serves node k
but not node 1i. Suppose node 1 is served by node j' # j. Then the cost
from this part of the solution is djk + fj + dJ..1 + fj.. If instead, node i
is served by node j, the cost is dji + djk + fj + fj..

Thus 1f dji L d;i;, we can serve i and all nodes after i that are

J
being served by j' without increasing the cost. This reduces the number

. Which implies

of subtree violations by one. Otherwise dji > dJ..1

d, =d.. + dik > d,;

Jk ji Jjhi * di

ik’

This inequality implies that the solution in which j' serves k and only

nodes after k that are currently being served by j costs less than the

original., It also reduces the number of subtree violations by at least one.
A similar argument proves the result for the economic lot sizing problem.
Both of these results suggest that the ability to partition the solution

into subtrees is crucial and leads us to consider the following generalization.

C. The Tree Partitioning Problem Given a tree graph G = (V,E) and a node by

node matrix with elements Yij all i, j ¢ V, let the weight of a subtree

Gj = (Vj,Ej) be w(Gj) = max ( yik). Find a partition of G into sub-

chj e j

trees such that the sum of the weights over all subtrees in the solution is

maximum,
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! ' To model the lot sizing problem as a tree partitioning problem we take
o
N vy3 = -(fy *+ pydy)

1.

\.‘-I + + .
::.‘n‘ Y1j = -(pj + CJ- +.oo+ ci-l)di 1f i > J
s - - e

‘ YiJ- = "(pj + Cj +oeeut c1+1)d1~ 1f 1 < Jo

A
::

"
o To model the tree location problem as a tree partitioning problem we take
-

b

) L= -f. s 2 - . i ..

Y35 j and Y widiJ if i2]

-

.\j We now formulate the tree partitioning problem as an integer program in a
-4
:E: . manner that establishes its connection to UL. If j* ¢ Vj is such that J
‘ arg max (7 vq ) = j*, we say that j* is the root of subtree G.. Llet

- keV, i€V, J

I T

T Yij ® 1 if ie V is in a subtree rooted at j and Yij = 0 otherwisa.
";ﬁi Then the tree partitioning problem can be formulated as
2 .

4 1]

- (8.2) - Yy ® 1 all i eV

.'..:‘ j

o (8.3) Yii = Yy <0 all 4, 4', jeV such that i
et ] J precedes i on a path fromj ¢to i
};.
o (8.4) Yij € (0.1} all 1, je V.

o

"
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ﬁf Constraint (8.3) guarantees that if j 1{s the root of a tree that contains
%; i then the tree must also contain i', Constraint (8.2) guarantees that each
b node must be in exactly one tree.
q:ﬂ The linear programming relaxation of this integer program is obtained by
o~
Vo replacing (8.4) by
D
;:; (8.5) yij 20 alli, jeV.
::j,
Y
N Theorem 8.3 [Barany, Edmonds and Wolsey (1983)] The polyhedron defined by
(2 (8.2), (8.3) (8.5) has only integral extreme points. Hence for any objective
§ function (8.1) the solution to the linear programming relaxation is integral.
”
. This model for the tree partitioning probiem resembles the modeil (1l.1)-
D (1.4) for UL if we think of the yjj's as xj's and replace (8.3) by (1.3).
ﬂﬁ In fact, we can represent solutions of UL as a collection of subtrees that
o partition a graph G, but unfortunately G 1is not a tree. In the graph of
5 Figure 8.1, V1 represents the set of clients and V2 the set of facilities.
o
'~
o
»
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X
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K Figure 8.1

;}4 A solution to the problem is a set of subtrees, each of which is rooted at

a node in VZ‘ The edges from the root of a tree to nodes in V1 (solid

A
c‘.-
A

' .
.t e Y

edges) show the clients being served by the facility that corresponds to the

root. A node in V

&, ‘~<.l‘;.$ -

2 that is not a root corresponds to an unused facility

A
o

(dashed edges). We set iy = Cij for i ¢ V1 and j < VZ‘ To eliminate

(S -

the possibility of nodes in V1 being roots we set Yij =M for je V1

PACs
I. l !“’ ‘.‘

(M is a large positive number) and to represent the fixed costs we set

NS Y

}.rla‘-'
f 3
Pd

Yij = -fj for j ¢ Vz. Finally to accommodate unused facilities we set

Y ik =0 if j and k are in VZ’

'_l‘.ll-l.“ iie

S
Sl Y
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s
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We close this section by giving an O(IVZI) dynamic programming

[ g
b
14

algorithm for solving the tree partitioning problem. Another very general
dynamic programming algorithm for location problems on trees can be found in

-};; Megiddo, Zemel and Hakimi (1983).
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Given the tree G = (V,E) we choose an arbitrary root r. This induces
a partial order on V. For all v e V, let V(v) = {t: v 1is on the unique
path between r and t} and S(v) = {t: v is the node that precedes t on
the unique path between r and t}. Let Tv be the tree induced by V(v)
and g(v) = optimal weight partition for the tree Tv.

The idea of the algorithm is to calculate g(r) recursively by deter-
ming g(v) from the g(w) for all w e S(v). A node w is said to be a
leaf of T if S(w) = @. Note that we can begin the recursion with g(w) =
Yuw for all leaves. Before giving the general recursion equation, we need
one more definition. Let gu(v) = optimal weight partition of Tv when v

is served by node u and u may not necessarily be an element of V(v).

Then

(8.6) g(v) = max gu(v)
ueV(v)

and if w 1is a leaf of Tr

(8.7) gu(w) * Yuu for all u e V.,

Now suppose we are given gu(w) all we S{v) and all u e V. The calcu-

Tation of gu(v) divides into two cases as shown in Figure 8.2




S(v)

S{v)

Figure 8.2

If ug Vv) or u=v and u serves v, then u

o we S(v) if qu(w)‘z g(w). Hence

wil]l also serve

'.t'\:_ (8-8) g (V) = +

RN

If u e V(v)\(v}, then u e V(w*) for some w* ¢ S(v). Hence if u serves

]
. AR
Bk,

v then u serves w*. Thus

(8.9) g (v) =y, + 7§ max{g (w),3(w)} + g ‘w*'.
¢ Y weS(v)\ (w) ! -
P An Sxamole
N -_—
f?“i We consider a tree location oroblem on the gqraph of Figure 3.3, The
e numbers an the edges are the
@
....%‘
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B .

ié; (2,11)

-,

:} Figure 8.3

_,-u dij's and the pair of numbers adjacent to the nodes are (wi’fi) all
o

..1‘ . - 3 - .

gz ie Ve Let Yi; = Fj all j eV and Yij""idij all i #3je V.
S8 Hence we obtain the matrix

- -7 -4 -3 -7 -6

A 8 -4 .14 -6 -4

o y = -6 -14 211  -20 18 .

- -7 -3 -10 -6 -5

-2 -12 -4 -18 -10 -8

o

X For w= 3,4,5 the bottom 3 rows of the matrix y give gu(w), see (8.7).

I For node 2, (8.8) and (8.9) yield |
=

> g,(2) = v,y *+ max(g,(4),9(4)} + max{g;(5),9(5)}

o -8 + max(-7,-6) + max(-12,-8) = -22

o g,(2) = -4 + max(-3,-6) + max(-4,-8) = -11

3

xY
d g3(2) = .14 + max(-10,-6) + max(-18,-8) = -28

X 94(2) = v, + max{gy(5),9(5)} + 9(4)

2 = -6 + max(-10,-8} + (=6) = -20

. gc(2) = -4 + max{-5,-6} - (-8) = -17.
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Hence

9(2) = max{9,(2),94(2),95(2)} = max({-11,-20,-17} = g,(2) = -11.

For node 1 we obtain

9;(1) = =7 + max{-22,-11} + max{-6,-11} = -24
95(1) = -4 + max(-14,-11} + (-11) = -26

g5(1) = -3 + max{-28,-11} + (-11) = -25

94(1) = -7 + max{-20,-11} + (-20) = -38

9 (1) = -6 + max{-18,-11} + (-17) = -34 .

Hence g(1) = gl(l) = <24, where gl(l) vy * g(2) + 91(3).
Thus node 1 serves itself and node 3. Since 9g(2) = 95(2) = vy, +
92(4) + 92(5), node 2 serves itself and nodes 4 and 5.

..................................
--------------------------------
..................
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1 9. Submodularity

~ As defined at the outset of this chapter, UL is the combinatorial

‘;: problem

RS

bS5 max z(S)

b : Sed

. where

¥

L

"". m

K (9.1) z2(S) = 7 maxc;. - 7 f,

{ izl je§ I jes !

'r\

-

iﬁ is the profit made when the set S of facilities is open. A very important
{” property of the set function 2z is its submodularity, A function w

3 defined on the subsets of a finite set J is submodular if

38

3

w(Su{k}) - w(S) < w(Ru{k}) -w(R) for all k ¢ S and Rc S< J - {k}.

:\‘{

o The fact that the profit function 2z {s submodular was observed by
S

N Spielberg (1969a), Babayev (1974), Frieze (1974) and Fisher, Nemhauser and
f; Wolsey (1978). It means that the additional profit that can be made by

'-"
N opening a facility in location k when a set S 1{s already open in other
f' locations is a nonincreasing function of S with respect to set inclusion,
. The larger S, the smaller the profit of establishing a new facility. This
s is proved formally in the next theorem.

"
3
;ﬁ Theorem 9.1 The profit function 2z is submodular.
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Proof Let R< S<dJ - (k}. Forall i=1,...,m
max c1j - max cij = max(0, Cip - max Ci')
jeSu{k} jeS jes
S max(0, c;, - max c..) = max c,. - max c, .
g N gerup M jer 1

where the inequality follows from max c,

jeS W= JeR

By summing these inequalities for all

> max cij.

i, we obtain

69

m
max ci. - 7
1 JjeSu(k}

m
o omax c.. £ mx C,. - ° mxc¢
I 421 jes W T HEL jeRutky 421 jeR

e 13

m
i . 1]

Hence

z(Su{k}) - z(S) < z(Ru{k}) - z(R). O
Thus UL is a special case of the more general problem

(9.2) max {z(S): z submodular}.

Sed
We can apply the greedy and interchange heuristics to (9.2), we can formulate
(9.2) as an integer program and many of the results that we have given for UL
extend to (9.2) and, in particular, to the capacitated location problem which
is another special case of it. We will not elaborate on these results here,
but refer the interested reader to Fisher, Nemhauser and Wolsey (1978),
Nemhauser and Wolsey (1978), Nemhauser, Wolsey and Fisher (1978), Cornuejols,

Nemhauser and Wolsey (1980) and Nemhauser and Wolsey (1981).
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